Factorising expressions

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $ax^2 + bx + c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose product is ac.
- An expression in the form $x^2 y^2$ is called the difference of two squares. It factorises to (x y)(x + y).

Examples

Example 1 Factorise $15x^2y^3 + 9x^4y$

$15x^2y^3 + 9x^4y = 3x^2y(5y^2 + 3x^2)$	The highest common factor is $3x^2y$. So take $3x^2y$ outside the brackets and then divide each term by $3x^2y$ to find the terms in the brackets
---	---

Example 2 Factorise $4x^2 - 25y^2$

$4x^2 - 25y^2 = (2x + 5y)(2x - 5y)$	This is the difference of two squares as the two terms can be written as $(2x)^2$ and $(5y)^2$
-------------------------------------	--

Example 3 Factorise $x^2 + 3x - 10$

b = 3, ac = -10	1 Work out the two factors of ac = -10 which add to give $b = 3(5 and -2)$
So $x^2 + 3x - 10 = x^2 + 5x - 2x - 10$	 2 Rewrite the <i>b</i> term (3<i>x</i>) using these two factors
= x(x+5) - 2(x+5)	3 Factorise the first two terms and the last two terms
= (x+5)(x-2)	4 $(x+5)$ is a factor of both terms

Example 4 Factorise $6x^2 - 11x - 10$

b = -11, ac = -60	1 Work out the two factors of
	ac = -60 which add to give $b = -11$
So	(-15 and 4)
$6x^2 - 11x - 10 = 6x^2 - 15x + 4x - 10$	2 Rewrite the <i>b</i> term $(-11x)$ using
	these two factors
= 3x(2x-5) + 2(2x-5)	3 Factorise the first two terms and the
	last two terms
=(2x-5)(3x+2)	4 $(2x-5)$ is a factor of both terms

Simplify $\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$

$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$	1 Factorise the numerator and the denominator
For the numerator: b = -4, $ac = -21So$	2 Work out the two factors of $ac = -21$ which add to give $b = -4$ (-7 and 3)
$x^2 - 4x - 21 = x^2 - 7x + 3x - 21$	3 Rewrite the <i>b</i> term $(-4x)$ using these two factors
=x(x-7)+3(x-7)	4 Factorise the first two terms and the last two terms
= (x-7)(x+3)	5 $(x-7)$ is a factor of both terms
For the denominator: b = 9, ac = 18	6 Work out the two factors of ac = 18 which add to give $b = 9(6 and 3)$
So $2x^2 + 9x + 9 = 2x^2 + 6x + 3x + 9$	7 Rewrite the <i>b</i> term $(9x)$ using these two factors
= 2x(x+3) + 3(x+3)	8 Factorise the first two terms and the last two terms
=(x+3)(2x+3) So	9 $(x+3)$ is a factor of both terms
$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9} = \frac{(x - 7)(x + 3)}{(x + 3)(2x + 3)}$	10 $(x + 3)$ is a factor of both the numerator and denominator so cancels out as a value divided by
$=\frac{x-7}{2x+3}$	itself is 1

Practice

1	Factorise.			
	a	$6x^4y^3 - 10x^3y^4$	b	$21a^3b^5 + 35a^5b^2$
	c	$25x^2y^2 - 10x^3y^2 + 15x^2y^3$		
2	Fac	ctorise		
	a	$x^2 + 7x + 12$	b	$x^2 + 5x - 14$
	c	$x^2 - 11x + 30$	d	$x^2 - 5x - 24$
	e	$x^2 - 7x - 18$	f	$x^2 + x - 20$
	g	$x^2 - 3x - 40$	h	$x^2 + 3x - 28$
3	Fac	ctorise		
	a	$36x^2 - 49y^2$	b	$4x^2 - 81y^2$
	c	$18a^2 - 200b^2c^2$		

Hint

Take the highest common factor outside the bracket.

4 Factorise

a	$2x^2 + x - 3$	b	$6x^2 + 17x + 5$
c	$2x^2 + 7x + 3$	d	$9x^2 - 15x + 4$
e	$10x^2 + 21x + 9$	f	$12x^2 - 38x + 20$

5 Simplify the algebraic fractions.

a	$\frac{2x^2 + 4x}{x^2 - x}$	b	$\frac{x^2+3x}{x^2+2x-3}$
c	$\frac{x^2-2x-8}{x^2-4x}$	d	$\frac{x^2 - 5x}{x^2 - 25}$
e	$\frac{x^2 - x - 12}{x^2 - 4x}$	f	$\frac{2x^2 + 14x}{2x^2 + 4x - 70}$

6 Simplify

a
$$\frac{9x^2 - 16}{3x^2 + 17x - 28}$$

b $\frac{2x^2 - 7x - 15}{3x^2 - 17x + 10}$
c $\frac{4 - 25x^2}{10x^2 - 11x - 6}$
d $\frac{6x^2 - x - 1}{2x^2 + 7x - 4}$

Extend

7 Simplify $\sqrt{x^2 + 10x + 25}$

8 Simplify
$$\frac{(x+2)^2 + 3(x+2)^2}{x^2 - 4}$$

Answers

1	a	$2x^3y^3(3x-5y)$	b	$7a^3b^2(3b^3+5a^2)$
	c	$5x^2y^2(5-2x+3y)$		
2		(x+3)(x+4)	h	(n + 7)(n - 2)
4	a			(x+7)(x-2)
		(x-5)(x-6)		(x-8)(x+3)
		(x-9)(x+2)		(x+5)(x-4)
	g	(x-8)(x+5)	n	(x+7)(x-4)
3	a	(6x - 7y)(6x + 7y)	b	(2x-9y)(2x+9y)
	c	2(3a - 10bc)(3a + 10bc)		
4	a	(x-1)(2x+3)	b	(3x+1)(2x+5)
	с	(2x+1)(x+3)	d	(3x-1)(3x-4)
	e	(5x+3)(2x+3)	f	2(3x-2)(2x-5)
5	a	$\frac{2(x+2)}{x-1}$	b	$\frac{x}{x-1}$
	c	$\frac{x+2}{x}$	d	$\frac{x}{x+5}$
		x+3	e	x
	e	<u> </u>	f	$\frac{x}{x-5}$
(3x + 4		2x + 3
6	a	$\overline{x+7}$	b	$\frac{2x+3}{3x-2}$
		2 - 5x	_	3x + 1
	c	$\frac{2-5x}{2x-3}$	d	$\frac{3x+1}{x+4}$

$$8 \quad \frac{4(x+2)}{x-2}$$