

Circle theorems

A LEVEL LINKS

Scheme of work: 2b. Circles - equation of a circle, geometric problems on a grid

Key points

A chord is a straight line joining two points on the circumference of a circle. So AB is a chord.

A tangent is a straight line that touches the circumference of a circle at only one point. The angle between a tangent and the radius is 90°.

Two tangents on a circle that meet at a point outside the circle are equal in length. So AC = BC.

The angle in a semicircle is a right angle. So angle $ABC = 90^{\circ}$.

When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference. So angle $AOB = 2 \times angle ACB$.

Angles subtended by the same arc at the circumference are equal. This means that angles in the same segment are equal. So angle ACB = angle ADB and angle CAD = angle CBD.

A cyclic quadrilateral is a quadrilateral with all four vertices on the circumference of a circle. Opposite angles in a cyclic quadrilateral total 180°. So $x + y = 180^\circ$ and $p + q = 180^\circ$.

The angle between a tangent and chord is equal to the angle in the alternate segment, this is known as the alternate segment theorem. So angle BAT = angle ACB.

Examples

Example 1 Work out the size of each angle marked with a letter. Give reasons for your answers.

Angle $a = 360^{\circ} - 92^{\circ}$ = 268° as the angles in a full turn total 360°.	1 The angles in a full turn total 360°.
Angle $b = 268^{\circ} \div 2$ = 134° as when two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference.	2 Angles <i>a</i> and <i>b</i> are subtended by the same arc, so angle <i>b</i> is half of angle <i>a</i> .

Example 2 Work out the size of the angles in the triangle. Give reasons for your answers.

Angles are 90°, $2c$ and c .	1 The angle in a semicircle is a right angle.
$90^{\circ} + 2c + c = 180^{\circ}$ $90^{\circ} + 3c = 180^{\circ}$ $3c = 90^{\circ}$ $c = 30^{\circ}$ $2c = 60^{\circ}$	 2 Angles in a triangle total 180°. 3 Simplify and solve the equation.
The angles are 30° , 60° and 90° as the angle in a semi-circle is a right angle and the angles in a triangle total 180° .	

Example 3 Work out the size of each angle marked with a letter. Give reasons for your answers.

Angle $d = 55^{\circ}$ as angles subtended by the same arc are equal.	1 Angles subtended by the same arc are equal so angle 55° and angle <i>d</i> are equal.
Angle $e = 28^{\circ}$ as angles subtended by the same arc are equal.	2 Angles subtended by the same arc are equal so angle 28° and angle <i>e</i> are equal.

Example 4 Work out the size of each angle marked with a letter. Give reasons for your answers.

Angle $f = 180^{\circ} - 94^{\circ}$ = 86° as opposite angles in a cyclic quadrilateral total 180°.	1 Opposite angles in a cyclic quadrilateral total 180° so angle 94° and angle <i>f</i> total 180° .
	<i>(continued on next page)</i>

Angle $g = 180^{\circ} - 86^{\circ}$ = 84° as angles on a straight line total 180°.	2 Angles on a straight line total 180° so angle <i>f</i> and angle <i>g</i> total 180° .
Angle $h = \text{angle } f = 86^{\circ}$ as angles subtended by the same arc are equal.	3 Angles subtended by the same arc are equal so angle f and angle h are equal.

Angle $i = 53^{\circ}$ because of the alternate segment theorem.	1 The angle between a tangent and chord is equal to the angle in the
Angle $j = 53^{\circ}$ because it is the alternate angle to 53°.	 alternate segment. As there are two parallel lines, angle 53° is equal to angle <i>j</i> because they are alternate angles.
Angle $k = 180^{\circ} - 53^{\circ} - 53^{\circ}$ = 74° as angles in a triangle total 180°.	3 The angles in a triangle total 180°, so $i + j + k = 180^\circ$.

Example 6XZ and YZ are two tangents to a circle with centre O.Prove that triangles XZO and YZO are congruent.

Angle OXZ = 90° and angle OYZ = 90° as the angles in a semicircle are right	For two triangles to be congruent you need to show one of the following.
angles.	• All three corresponding sides are equal (SSS).
OZ is a common line and is the hypotenuse in both triangles.	• Two corresponding sides and the included angle are equal (SAS).
OX = OY as they are radii of the same circle.	• One side and two corresponding angles are equal (ASA).
So triangles XZO and YZO are congruent, RHS.	• A right angle, hypotenuse and a shorter side are equal (RHS).

Practice

1 Work out the size of each angle marked with a letter. Give reasons for your answers.

b

d

b

2

Work out the size of each angle marked with a letter. Give reasons for your answers.

d

Hint

The reflex angle at point O and angle g are subtended by the same arc. So the reflex angle is twice the size of angle g.

Hint

Angle 18° and angle *h* are subtended by the same arc.

3 Work out the size of each angle marked with a letter. Give reasons for your answers.

- 4 Work out the size of each angle marked with a letter. Give reasons for your answers.
 - a

Hint

с

An exterior angle of a cyclic quadrilateral is equal to the opposite interior angle.

d 88°

d

b

Extend

5 Prove the alternate segment theorem.

Answers

- 1 **a** $a = 112^\circ$, angle OAP = angle OBP = 90° and angles in a quadrilateral total 360°.
 - **b** $b = 66^{\circ}$, triangle OAB is isosceles, Angle OAP = 90° as AP is tangent to the circle.
 - c $c = 126^{\circ}$, triangle OAB is isosceles. $d = 63^{\circ}$, Angle OBP = 90° as BP is tangent to the circle.
 - **d** $e = 44^{\circ}$, the triangle is isosceles, so angles *e* and angle OBA are equal. The angle OBP = 90° as BP is tangent to the circle.
 - $f = 92^{\circ}$, the triangle is isosceles.
 - e $g = 62^{\circ}$, triangle ABP is isosceles as AP and BP are both tangents to the circle. $h = 28^{\circ}$, the angle OBP = 90°.
- **2 a** $a = 130^{\circ}$, angles in a full turn total 360°. $b = 65^{\circ}$, the angle at the centre of a circle is twice the angle at the circumference. $c = 115^{\circ}$, opposite angles in a cyclic quadrilateral total 180°.
 - **b** $d = 36^{\circ}$, isosceles triangle. $e = 108^{\circ}$, angles in a triangle total 180°. $f = 54^{\circ}$, angle in a semicircle is 90°.
 - c $g = 127^{\circ}$, angles at a full turn total 360°, the angle at the centre of a circle is twice the angle at the circumference.
 - **d** $h = 36^{\circ}$, the angle at the centre of a circle is twice the angle at the circumference.
- 3 **a** $a = 25^{\circ}$, angles in the same segment are equal. $b = 45^{\circ}$, angles in the same segment are equal.
 - **b** $c = 44^{\circ}$, angles in the same segment are equal. $d = 46^{\circ}$, the angle in a semicircle is 90° and the angles in a triangle total 180°.
 - c $e = 48^{\circ}$, the angle at the centre of a circle is twice the angle at the circumference. $f = 48^{\circ}$, angles in the same segment are equal.
 - **d** $g = 100^{\circ}$, angles at a full turn total 360°, the angle at the centre of a circle is twice the angle at the circumference.
 - $h = 100^{\circ}$, angles in the same segment are equal.
- 4 **a** $a = 75^{\circ}$, opposite angles in a cyclic quadrilateral total 180°. $b = 105^{\circ}$, angles on a straight line total 180°. $c = 94^{\circ}$, opposite angles in a cyclic quadrilateral total 180°.
 - **b** $d = 92^{\circ}$, opposite angles in a cyclic quadrilateral total 180°. $e = 88^{\circ}$, angles on a straight line total 180°. $f = 92^{\circ}$, angles in the same segment are equal.
 - c $h = 80^{\circ}$, alternate segment theorem.
 - **d** $g = 35^{\circ}$, alternate segment theorem and the angle in a semicircle is 90°.

5 Angle BAT = x.

Angle OAB = $90^{\circ} - x$ because the angle between the tangent and the radius is 90° .

OA = OB because radii are equal.

Angle OAB = angle OBA because the base of isosceles triangles are equal.

Angle AOB = $180^{\circ} - (90^{\circ} - x) - (90^{\circ} - x) = 2x$ because angles in a triangle total 180° .

Angle ACB = $2x \div 2 = x$ because the angle at the centre is twice the angle at the circumference.

