

Gordano School A-level Chemistry Year 11 → Year 12 Summer Assignment

Submit this completed work in your first lesson in Year 12

Name:

Gordano School A-level Chemistry Summer Assignment

The following tasks should be completed before you start your Chemistry A level studies next year. Bring the completed booklet to your first lesson in Year 12.

Task 1 - Interesting Molecule Fact File

Here is a list of interesting molecules. Do some brief searches to find <u>one</u> that looks interesting to you, then carry out some research to find answers to the criteria below. Use your research to <u>produce a hand written fact file</u> on the <u>one</u> you choose:

Palytoxin (the most lethal toxin?), Luciferin (in fireflies), Tetrodotoxin (the most lethal toxin?), Capsaicin (in chillis), Novichok (top secret nerve agent?), Thalidomide (massive drug fail that changed the way we test drugs), Skatole (the smell of faeces!), Nicotine, Geosmin (the smell of Earth), Nepetalactone (cat nip), Morphine (powerful pain reliever), Penicillin (antibiotic)

Criteria to include in your fact file

- What your molecule is and what it is used for
- An image of its Chemical structure with a key to show which element each atom is
- Its molecular formula
- Where it is found
- Any interesting properties
- How its structure or formula allows it to have these properties
- Why it might be in the news
- Anything else relevant or interesting

Task 2 - Chemistry GCSE to A level Bridging Questions

Answer the questions on the following pages

FORMULAE AND MOLECULAR EQUATIONS

	lain why the formula of aluminium sulfate is Al ₂ (SO ₄) ₃ ; not AlSO ₄ .				

	[3]				
b) (i)	Write down the formulae of the following compounds.				
	Copper(II) sulfate[1]				
	Sodium hydroxide[1]				
	Copper(II) hydroxide[1]				
	Sodium sulfate[1]				
(ii)	Write a balanced molecular equation, including state symbols, for the reaction between copper(II) sulfate and sodium hydroxide in aqueous solution to give a precipitate of copper(II)hydroxide and a solution of sodium sulfate.				
1000	[2]				
c) (i)	Equations I and II relate to the Haber process and contact process, respectively. Both are incorrect. In each case state the fault (or faults) and then write down the correct equation. Equation I $N(g) + 3H(g) \Rightarrow NH_3(g)$				
	Fault(s)[1]				
	Correct equation[1]				
	Equation II $SO_2(g) + O_2(g) \Rightarrow SO_3(g)$				
	Fault(s)[1]				
	Correct equation[1]				
(ii)	The equations in c) (i) are each written with $a \Rightarrow sign$ instead of an arrow. What is the reason for this?				
. ,	[1]				
d) Iron	and HCl react together according to the following basic equation: Fe + 2HCl \rightarrow FeCl, + H,				
Dep solu mal pro (i)	pending on the reaction conditions the product may be (i) solid, anhydrous iron(II) chloride, (ii) an aqueous ation of iron(II) chloride, or (iii) crystals of iron(II) chloride-4-water. Select suitable state symbols and are any other necessary modifications to the basic equation to represent the formation of each of these ducts. Passing dry hydrogen chloride gas over heated iron to give anhydrous iron(II) chloride.				
(ii)	Dissolving iron in hydrochloric acid to give a solution of iron(II) chloride.				
	[1]				
(111)	Dissolving iron in hydrochloric acid and then crystallising the solution to give iron(II) chloride-4-water				

TOPIC 2 Questionsheet 3

Do not write in margin

MOLES

b) Calculate the mass of each of the following: (i) 1 mol of atomic nitrogen. [1] (ii) 1 mol of molecular nitrogen. [2] (ii) 0.48 g magnesium. [3] (ii) 100 kg calcium hydroxide. [4] (iii) 2 tonnes Sulfur. [5] (iii) 2 tonnes Sulfur. [6] (iii) 2 tonnes Sulfur. [7] (iii) 2 tonnes Sulfur. [8] (iii) 2 tonnes Sulfur. [9] (iii) 2 mass of tin in tin(IV) chloride, SnCl ₄ . [1] (iv) Calculate the percentage by mass of tin in tin(IV) chloride, SnCl ₄ . [1] (iv) Calculate the percentage by mass of tin in tin(IV) chloride, SnCl ₄ .	a)	Define the chemical term <i>mole</i> .	
(ii) 1 mol of molecular nitrogen. [1 (ii) 1 mol of molecular nitrogen. [1 (ii) 0.48 g magnesium. [1 (ii) 100 kg calcium hydroxide. [1 (iii) 2 tonnes Sulfur. [1 (iii) 2 tonnes Sulfur. [1 (iii) 2 tonnes Sulfur. [2 2) 2 mol of a compound has a mass of 117.0 g. What is its relative molecular mass? [2 (iii) What is the total number of moles of particles (ions, molecules) present in 0.35 mol of copper(II) Sulfate-5-water, CuSO ₄ -5H ₂ O?	b)	Calculate the mass of each of the following:	[3]
c) How many moles are there in each of the following? (i) 0.48 g magnesium. [1] (ii) 100 kg calcium hydroxide. [1] (iii) 2 tonnes Sulfur. [1] (iii) 2 tonnes Sulfur. [2] (iii) 2 tonnes Sulfur. [2] (b) Calculate the percentage by mass of tin in tin(IV) chloride, SnCl ₄ . [2] (b) What is the total number of moles of particles (ions, molecules) present in 0.35 mol of copper(II) Sulfate-5-water, CuSO ₄ -5H ₂ O?			[1]
(ii) 100 kg calcium hydroxide. [1] (iii) 2 tonnes Sulfur. [1] (iii) 2 tonnes Sulfur. [2] (iii) 2 tonnes Sulfur. [2] (iii) 2 tonnes Sulfur. [2] (iv) Calculate the percentage by mass of tin in tin(IV) chloride, SnCl ₄ . [2] (iv) 2 tonnes Sulfur. [3] (iv) 2 tonnes Sulfur. [4] (iv) Calculate the percentage by mass of tin in tin(IV) chloride, SnCl ₄ . [5] (iv) 2 tonnes Sulfur. [6] (iv) 2 tonnes Sulfur. [7] (iv) 2 tonnes Sulfur. [6] (iv) 4 tonnes Sulfur. [7] (iv) 4 tonnes Sulfur. [8] (iv) 4 tonnes Sulfur. [9] (iv) 4 tonnes Sulfur. [1] (iv) 6 tonnes Sulfur. [1] (iv) 7 tonnes Sulfur. [1] (iv) 6 tonnes Sulfur. [1] (iv) 6 tonnes Sulfur. [2] (iv) 8 tonnes Sulfur. [2] (iv) 9 tonnes Sulfur. [2] (iv) 9 tonnes Sulfur. [3] (iv) 9 tonnes Sulfur. [4] (iv) 9 tonnes Sulfur. [5] (iv) 9 tonnes Sulfur. [6] (iv) 9 tonnes Sulfur. [6] (iv) 9 tonnes Sulfur. [7] (iv) 9 tonnes Sulfur. [8] (iv) 9 tonnes Sulfur. [9] (iv) 9 tonnes Sulfur. [1] (iv) 9 tonnes Sulfur. [2] (iv) 9 tonnes Sulfur. [2] (iv) 9 tonnes Sulfur. [3] (iv) 9 tonnes Sulfur. [4] (iv) 9 tonnes Sulfur. [5] (iv) 9 tonnes Sulfur. [6] (iv) 9 tonnes Sulfur. [6] (iv) 9 tonnes Sulfur. [7] (iv) 9 tonnes Sulfur. [8] (iv) 9 tonnes Sulfur. [9] (iv) 9 tonnes Sulfur. [1] (iv) 9 tonnes Sulfur. [2] (iv) 9 tonnes Sulfur.	c)	How many moles are there in each of the following?	[1]
(iii) 2 tonnes Sulfur. [1 (iii) 2 tonnes Sulfur. [2 (i		(ii) 100 kg calcium hydroxide.	
d) Calculate the percentage by mass of tin in tin(IV) chloride, SnCl ₄ . [2 e) 2 mol of a compound has a mass of 117.0 g. What is its relative molecular mass? [2 f) What is the <i>total</i> number of moles of particles (ions, molecules) present in 0.35 mol of copper(II) Sulfate-5-water, CuSO ₄ .5H ₂ O?			
2 mol of a compound has a mass of 117.0 g. What is its relative molecular mass? [2 (f) What is the <i>total</i> number of moles of particles (ions, molecules) present in 0.35 mol of copper(II) Sulfate-5-water, CuSO ₄ .5H ₂ O?	d)		
f) What is the <i>total</i> number of moles of particles (ions, molecules) present in 0.35 mol of copper(II) Sulfate-5-water, CuSO ₄ .5H ₂ O?	e)		F0.7
	f)	What is the <i>total</i> number of moles of particles (ions, molecules) present in 0.35 mol o	Education in the the thickness interpretation of the control of th

TOPIC 4 Questionsheet 1

Do not write in margin

IONIC BONDING

a)	Defi	ne th	e terr	n <i>ionic</i>	bond.	
	******	******	*******		*************	
	******					[3]
b)					onic bond i → [Na	n sodium fluoride can be represented by:
	Con	nplete	each	of the	following	equations in the same format.
	(i)	** Ba	+	8 F 8		[2]
	(ii)	xx Ba	+	့္ထိ		[2]
	(iii)	ĸ	+	8 <u>6</u> 8		[2]
	(iii)	ĸ	+	°%	→	[2]
c)	Expl (i)		-		npounds: ible in wat	er, but insoluble in organic solvents.
	30000					[3]
	(ii)	cond	luct a	n electi	ic current	when molten or in solution, but not in the solid.

	*****	******	*****		***************************************	[3]

COVALENT BONDING

(i)	
****	Covalent bond
	Dative covalent bond
Sho (i)	www, by means of 'dot and cross' diagrams of outer electrons, the bonding present in: silicon tetrafluoride, SiF ₄
(ii)	the ammonium ion, NH_4^+
(iii)	the cyanide ion, CN
	[2] e an example of a covalent compound which does not obey the 'octet rule' of valency, and state in what ect the rule is not obeyed.
 Alu Cl+:	minium chloride is used as a catalyst in the chlorination of benzene, its role being to generate the electrophile $AlCl_3 + Cl_2 \rightarrow Cl^+ + AlCl_4^-$